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ABSTRACT

This report presents algorithms that can be utilized in a GPS receiver to convert satellite-
to-receiver pseudo-ranges to receiver position estimates. The report discusses a method
that is used to determine instantaneous estimates of receiver position and then goes on to
develop three Kalman filter based estimators, which use stationary receiver, low dynamics,
and high dynamics models for the receiver motion, respectively. These particular dynamic
models are utilized because they are commonly used in actual GPS receivers, and cover
a wide range of applications. While the standard form of the Kalman filter, of which the
three filters just mentioned are examples, is theoretically correct, it can be susceptible
to numerical round-off errors, which can in some cases result in poor performance or, in
the worst case, filter divergence. This issue, and its solution, is investigated, and another
version of the high dynamics filter, which addresses this problem, is presented. Matlab
code was developed to test the performance of each of the filters and simulations were
performed. The results of the simulations are also presented.

RELEASE LIMITATION

Approved for Public Release

UNCLASSIFIED



UNCLASSIFIED

Published by

Cyber and Electronic Warfare Division
Defence Science and Technology Group
PO Box 1500
Edinburgh, South Australia 5111, Australia

Telephone: 1300 333 362
Facsimile: (08) 7389 6567

© Commonwealth of Australia 2016
AR-016-601
June, 2016

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED



UNCLASSIFIED

Development of GPS Receiver Kalman Filter
Algorithms for Stationary, Low-Dynamics, and

High-Dynamics Applications

Executive Summary

The Global Positioning system (GPS) is the primary source of information for a broad
range of positioning, navigation and timing systems. It is an all-weather, satellite-based
radio-navigation system which provides world-wide coverage. The objective of this report
is to present algorithms used in a central component of the system’s receiver position
calculation, viz., to convert the satellite-to-receiver pseudo-ranges to receiver position es-
timates. This report is one outcome of recent efforts to expand our knowledge base for this
important component of GPS receiver technology; this increased knowledge will facilitate
our capabilities to provide scientifically based advice to the Australian Defence Force.

The report first describes a method for determining instantaneous estimates of receiver
position, and then goes on to develop three Kalman filter based receiver position estima-
tors, i.e., a stationary receiver, low dynamics, and high dynamics estimator. As is implied
by their names, the three types of filters incorporate dynamic models that are optimized
for situations where the receiver is stationary, is subjected to small accelerations, and to
large accelerations, respectively. These estimators are designed to optimize performance
for commonly occurring applications, as is done in many GPS receivers.

The development of the three types of Kalman filter, as well as the instantaneous estimator
is presented in Section 2. Section 3 then presents the results of testing by simulation. It
is found that the simulations give indications of performance degradation, resulting from
errors associated with numerical round-off, in the case of the high dynamics Kalman filter.
This is then further investigated in Section 4 and an alternate form of the high dynamics
filter is then developed to overcome the problem. The filter was implemented in Matlab
and tested by simulation. The results of the simulations are also in Section 4. Finally,
concluding remarks are presented in Section 5.

While this report deals specifically with GPS algorithms, the work covered forms part
of a larger effort to develop algorithms for fusing GPS measurements with other sensor
data, particularly measurements from inertial navigation systems (INS), to support R&D
into multisensor positioning and navigation performance in non-benign environments. The
algorithms presented in this report, and software developed for this work, will be required
for future research into deep integration of GPS with other sources of position data. The
software will also be useful as a component of future modelling software that may need to
be developed for performance prediction of current or future systems that incorporate GPS.
The ultimate aim is to help inform future capability requirements through the outcomes
of this research.
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1 Introduction

The Global Positioning System (GPS) is a satellite-based radio-navigation system that
provides world-wide, all-weather, coverage. GPS receivers decode and process messages
from in-view satellites to determine the receiver’s location as well as the current time; in
this report, GPS receiver position determination is considered. To determine the receiver’s
location, the GPS system uses time of arrival ranging. Each GPS receiver contains an in-
ternal clock which it uses to determine the time of arrival of satellite ranging signals; using
this information, the receiver calculates the time taken for the signal to travel from the
satellite to the receiver. Since the signal travels at the speed of light, c; this time interval
can be converted to a distance by simply multiplying by c. The distance calculations are
biased by the receiver and satellite clock errors, and are therefore referred to as pseudo-
ranges. Because of cost and other constraints, the receiver clock is in general much less
accurate than the satellite clocks. If the location of four in-view satellites is known, and
their ranges to the receiver are measured, the location of the receiver and its clock bias
can be computed.

The objective of this report is to present the mathematics used to convert the satellite-to-
receiver pseudoranges to receiver position estimates. The report discusses a method that
is used to determine instantaneous estimates of receiver position, i.e., estimates based on
pseudo-ranges at one time instant, and then goes on to develop three Kalman filter based
estimators. Typically the instantaneous estimates are used to initialize a Kalman filter, as
Kalman filters require an initial estimate to start their recursions. The three Kalman filter
estimators that are presented will be referred to as stationary receiver, low dynamics, and
high dynamics filters. As is implied by their names, the three types of filters are optimized
for situations where the receiver is stationary, is subjected to small accelerations, and to
large accelerations, respectively. This approach is consistent with what can be found in
many actual GPS receivers, which allow the user to specify the dynamic level for the given
application.

While the standard form of the Kalman filter, of which the three filters just mentioned
are examples, is theoretically correct, it can be susceptible to numerical round-off errors.
The effects of these errors can be degraded filtering or, in some instances, Kalman filter
instability, leading to quite unpredictable behaviour. This issue, and its solution, is in-
vestigated, and another version of the high dynamics filter is presented. Matlab code was
developed to test the performance of each of the filters and simulations performed. The
results of the simulations are also presented.

In Section 2, the development of the three types of Kalman filter, as well as the instanta-
neous estimator is presented. Section 3 then presents the results of testing by simulation.
It is noted that there are some indications of adverse effects due to numerical round-off in
the case of the high dynamics Kalman filter. To investigate this issue further, an alternate
form of the high dynamics filter is developed in Section 4. The filter was implemented in
Matlab and tested by simulation; the results of the simulations are also in Section 4. At
the end of the paper, concluding remarks are presented in Section 5.
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2 Kalman Filter Development for the Processing

of GPS measurements

2.1 Initial Single Point GPS solution

The GPS positioning problem has four unknowns that can be solved using the following
equations which use measurements from four satellites [1, p. 145].

ρ̃1 =
[
(X1 − x)2 + (Y1 − y)2 + (Z1 − z)2

]1/2
+ ctr + χ1 (1)

ρ̃2 =
[
(X2 − x)2 + (Y2 − y)2 + (Z2 − z)2

]1/2
+ ctr + χ2

ρ̃3 =
[
(X3 − x)2 + (Y3 − y)2 + (Z3 − z)2

]1/2
+ ctr + χ3

ρ̃4 =
[
(X4 − x)2 + (Y4 − y)2 + (Z4 − z)2

]1/2
+ ctr + χ4

where

χi = ctsvi + ctai + ei +mi + ηi, i = 1, .., 4

and ρ̃i, i = 1, .., 4 are the measured pseudoranges from satellite i to the receiver an-
tenna, Xi, Yi, Zi are the earth-centred-earth-fixed (ECEF) position coordinates of satellite
i, x, y, z are the ECEF position coordinates of the receiver antenna, tr is the receiver clock
bias, tsvi is the clock bias of satellite i, tai is the atmospheric delay, ei represents the error
in the broadcast ephemeris data, mi represents the multipath error, ηi represents receiver
tracking error noise, and c is the speed of light.

In equations 1, the pseudorange measurements are dependent on the receiver coordinates
in a nonlinear manner. While closed form solutions are available, typically the solution is
found by first linearizing the measurement equations, which can then be solved iteratively.
The method described below relies on Newton’s method.

Let us assume that χi = 0, i = 1, .., 4, then the relationships between the pseudoranges
and the receiver position are

ρ1 =
[
(X1 − x)2 + (Y1 − y)2 + (Z1 − z)2

]1/2
+ ctr (2)

ρ2 =
[
(X2 − x)2 + (Y2 − y)2 + (Z2 − z)2

]1/2
+ ctr

ρ3 =
[
(X3 − x)2 + (Y3 − y)2 + (Z3 − z)2

]1/2
+ ctr

ρ4 =
[
(X4 − x)2 + (Y4 − y)2 + (Z4 − z)2

]1/2
+ ctr

Note that in the above equation it is effectively assumed that the only source of range
bias is the receiver clock bias, which can be calculated and accounted for by solving four
simultaneous equations, instead of the minimum of three that would be required if there
was no range bias at all.

2
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Defining the vector x = (x, y, z, ctr) and linearizing Equations 2 results in
ρ1 (x)
ρ2 (x)
ρ3 (x)
ρ4 (x)

 =


ρ1 (x0)
ρ2 (x0)
ρ3 (x0)
ρ4 (x0)

+ J


(x− x0)
(y − y0)
(z − z0)

(ctr − (ctr)0)

+ hot′s (3)

where x0 = (x0, y0, z0, (ctr)0) is the point of linearization, hot′s represents the higher order
terms in the expansion of Equations 2, and

J =


∂ρ1
∂x

∂ρ1
∂y

∂ρ1
∂z

∂ρ1
∂(ctr)

∂ρ2
∂x

∂ρ2
∂y

∂ρ2
∂z

∂ρ2
∂(ctr)

∂ρ3
∂x

∂ρ3
∂y

∂ρ3
∂z

∂ρ3
∂(ctr)

∂ρ4
∂x

∂ρ4
∂y

∂ρ4
∂z

∂ρ4
∂(ctr)


(x0,y0,z0,(ctr)0)

(4)

The partial derivatives in Equation 4 can easily be derived as

∂ρi
∂x

=
− (Xi − x)[

(Xi − x)2 + (Yi − y)2 + (Zi − z)2
]1/2

(5)

∂ρi
∂y

=
− (Yi − y)[

(Xi − x)2 + (Yi − y)2 + (Zi − z)2
]1/2

∂ρi
∂z

=
− (Zi − z)[

(Xi − x)2 + (Yi − y)2 + (Zi − z)2
]1/2

∂ρi
∂ (ctr)

= 1

Now, if we assume that hot′s = 0 in Equations 3, and χi = 0, i = 1, .., 4 in Equations 1,
we can then form

ρ1 (x)
ρ2 (x)
ρ3 (x)
ρ4 (x)

−

ρ̃1

ρ̃2

ρ̃3

ρ̃4

 =


ρ1 (x0)
ρ2 (x0)
ρ3 (x0)
ρ4 (x0)

−

ρ̃1

ρ̃2

ρ̃3

ρ̃4

+ J


(x− x0)
(y − y0)
(z − z0)

(ctr − (ctr)0)

 =


0
0
0
0


Let

% (x) =


ρ1 (x)
ρ2 (x)
ρ3 (x)
ρ4 (x)

−

ρ̃1

ρ̃2

ρ̃3

ρ̃4


then we have
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% (x) = % (x0) + J


(x− x0)
(y − y0)
(z − z0)

(ctr − (ctr)0)



=


0
0
0
0


Rearranging the above equation we have

% (x0) + J


x
y
z
ctr

− J


x0

y0

z0

(ctr)0

 =


0
0
0
0


Multiplying by J−1 gives

J−1% (x0) +


x
y
z
ctr

−


x0

y0

z0

(ctr)0

 =


0
0
0
0


and rearranging again gives


x
y
z
ctr

 =


x0

y0

z0

(ctr)0

− J−1% (x0)

which is now in a suitable form for applying Newton’s method (also known as the Newton-

Raphson method) by just replacing x = (x, y, z, ctr) with xj+1 =
(
xj+1, yj+1, zj+1, (ctr)j+1

)
and x0 = (x0, y0, z0, (ctr)0) with xj =

(
xj , yj , zj , (ctr)j

)
, j = 0, 1, .., N resulting in

xj+1 = xj − J−1% (xj) (6)

We simply start with an initial guess for x0 = (x0, y0, z0, (ctr)0) and iterate till convergence
is reached. A simple test for convergence is ‖xj+1 − xj‖ < ε, where ε is set to a small
positive value.

If measurements from more than four satellites are available, then J−1 in Equation 6 can
be replaced with

(
JTJ

)−1
JT to give the least squares solution, resulting in

xj+1 = xj −
(
JTJ

)−1
JT% (xj) (7)

Equation 7 is referred to as the Gauss-Newton method. Note that Equation 7 assumes
that the pseudorange measurement errors have identical variances.

4
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2.2 Receiver Clock Bias Dynamic Model

One of the components of the Kalman filter models that are developed in this report is
the receiver clock bias model. The state space model used for the receiver clock bias is
that described on page 152 of [1]. The discrete time state transition equation is[

tr(k + 1)
ṫr(k + 1)

]
=

[
1 T
0 1

] [
tr(k)
ṫr(k)

]
+

[
ωdφ(k)
ωdf (k)

]
where T is the sampling period, and k is the time index.

The covariance matrix associated with the disctrete-time process noise vector
[
ωdφ(k) ωdf (k)

]T
is

Qdt (k) =

[
SφT + T 3

3 Sf
T 2

2 Sf
T 2

2 Sf SfT

]

where Sφ and Sf are the power spectral densities of ωφ and ωf (the continuous-time process
noises) respectively. An example value of the discrete time process noise covariance matrix,
scaled to metres, is shown on page 153 of [1]. It is

Qd (k) = c2Qdt (k) =

[
0.0114 0.0019
0.0019 0.0039

]
(8)

2.3 Plant and Measurement Equations for a Stationary Re-
ceiver

Before going further, a comment on notation is required. Many of the equations de-
scribed in this report contain matrices and vectors whose elements are functions of time
(represented by the time index k). To shorten the equations somewhat, a shorthand
notation is used where appropriate; viz., consider an m × n matrix A, with elements
aij (k) , i = 1, ..,m, j = 1, .., n, then

a11 . . . a1n

. . . . .

. . . . .

. . . . .
am1 . . . amn


k

≡


a11 (k) . . . a1n (k)
. . . . .
. . . . .
. . . . .

am1 (k) . . . amn (k)



As can be found on page 105 of [1] (although full details are not given there), the discrete
time state transition equation that is used for the stationary receiver case is

x (k + 1) = F (k) x (k) + v (k)

where

x (k)
∆
= [x, y, z, rtr , ṙtr ]

T
k , rtr (k)

∆
= ctr (k) (9)

UNCLASSIFIED
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F (k) is the state transition matrix, v (k), k = 0, 1, ..., is a sequence of five dimensional
zero mean white Gaussian process noise, and

F (k) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 T
0 0 0 0 1

 (10)

The associated process noise covariance matrix (with the clock bias scaled to metres) that
is shown on page 105 of [1] as an example is

Qv (k) =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0.07 0.04
0 0 0 0.04 0.08


Note that the first three elements in the leading diagonal of the above matrix are zero;
this is because the model assumes that the receiver is stationary.

The above covariance matrix is somewhat different to what would result from Equation
8, i.e.:

Qv (k) =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0.0114 0.0019
0 0 0 0.0019 0.0039

 (11)

This latter covariance matrix is used in the simulations. The most appropriate values for
the four bottom right hand elements of the matrix, of course, depend on the details of the
particular receiver that is being modelled.

It is convenient to write the measurement equation in component form. In this form it is

ρi (k + 1) =
[
(Xi (k + 1)− x (k + 1))2 + (Yi (k + 1)− y (k + 1))2 + (Zi (k + 1)− z (k + 1))2

]1/2

+rtr (k + 1)

for i = 1, .., Ns

Note that the measurement vector at time k is

ρ (k) =
[
ρ1 (k) ρ2 (k) . . ρNs (k)

]T
(12)

For small increments in ∆x we can linearize as follows. Let ∆x (k + 1) = x (k + 1)−x (k),
then in component form we can write

∆ρi (k + 1) = Hi (k + 1) ∆x (k + 1) + vi (k + 1)

or in vector form it is

∆ρ (k + 1) = H (k + 1) ∆x (k + 1) + v (k + 1)

6
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where

H (k + 1) =


∂ρ1
∂x

∂ρ1
∂y

∂ρ1
∂z

∂ρ1
∂rtr

0
∂ρ2
∂x

∂ρ2
∂y

∂ρ2
∂z

∂ρ2
∂rtr

0

. . . . .

. . . . .
∂ρNs
∂x

∂ρNs
∂y

∂ρNs
∂z

∂ρNs
∂rtr

0


k+1

(13)

is the 5×Ns dimensional measurement matrix, and Ns is the number of satellite-to-receiver
pseudorange measurements at time k.

The partial derivatives in the above matrix are

∂ρi
∂x

=
− (Xi − x)[

(Xi − x)2 + (Yi − y)2 + (Zi − z)2
]1/2

∂ρi
∂y

=
− (Yi − y)[

(Xi − x)2 + (Yi − y)2 + (Zi − z)2
]1/2

∂ρi
∂z

=
− (Zi − z)[

(Xi − x)2 + (Yi − y)2 + (Zi − z)2
]1/2

∂ρi
∂rtr

= 1 where i = 1, .., Ns

The corresponding measurement noise covariance matrix is

R (k) =


σ2
r1 0 . . 0
0 σ2

r2 . . 0
. . . . .
. . . . .
0 0 . . σ2

rNs


k

(14)

where σ2
ri (k) , i = 1, .., Ns is measurement noise variance for the measurement from satel-

lite i at time k.

2.4 Plant and Measurement Equations for a Low Dynamics
Receiver

A short description of the continuous time low dynamics receiver model can be found
on page 243 of [1] (although full details are not given there). We need to use a discrete
time model; a good approximation to the corresponding discrete time model is as follows
[2, Section 6.3.2]. In this model the receiver’s acceleration is modelled using piecewise
constant white acceleration noise. The discrete-time state transition equation is

x (k + 1) = F (k) x (k) + Γ (k) v (k)
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where Γ (k) is noise gain at time k, x (k)
∆
= [x, ẋ, y, ẏ, z, ż, rtr , ṙtr ]

T
k , rtr (k)

∆
= ctr (k), and

F (k) =



1 T 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 T 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 T 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 T
0 0 0 0 0 0 0 1


(15)

Γ (k) =



0.5T 2 0 0 0 0
T 0 0 0 0
0 0.5T 2 0 0 0
0 T 0 0 0
0 0 0.5T 2 0 0
0 0 T 0 0
0 0 0 1 0
0 0 0 0 1


(16)

v (k) =
[
ẍ ÿ z̈ cωdφ cωdf

]T
k

(17)

Let us now determine the process noise covariance matrix associated with this model. First

let us consider the covariance matrix associated with v (k), i.e., Qv (k) = E
{

v (k) v (k)T
}

.

We have

Qv (k) =


σ2
ẍ 0 0 0 0

0 σ2
ÿ 0 0 0

0 0 σ2
z̈ 0 0

0 0 0 σ2
rφ

σrφσrf
0 0 0 σrfσrφ σ2

rf

 (18)

where σẍ, σÿ and σz̈ are the standard deviations of the x, y, and z components of the
acceleration noise, respectively, σrφ and σrf are the standard deviation of the clock bias
process noise due to the phase error (scaled to metres), and that due to frequency error,
respectively, and σrφσrf = σrfσrφ are their covariances. Note that the components of the
acceleration noise are assumed to be independent of each other and the clock bias noises.

Now consider the process noise when multiplied by the gain matrix Γ (k), i.e., QΓv (k) =

E
{

[Γ (k) v (k)] [Γ (k) v (k)]T
}

. The resulting process noise covariance matrix can be shown

to be

QΓv (k) = Γ (k)Qv (k) Γ (k)T (19)

The measurement equation is the same as in Section 2.3, but with the measurement matrix
now being

8
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H (k + 1) =


∂ρ1
∂x 0 ∂ρ1

∂y 0 ∂ρ1
∂z 0 ∂ρ1

∂rtr
0

∂ρ2
∂x 0 ∂ρ2

∂y 0 ∂ρ2
∂z 0 ∂ρ2

∂rtr
0

. . . . . . . .

. . . . . . . .
∂ρNs
∂x 0

∂ρNs
∂y 0

∂ρNs
∂z 0

∂ρNs
∂rtr

0


k+1

(20)

and the corresponding measurement noise covariance matrix is as in Equation 14.

2.5 Plant and Measurement Equations for a High Dynamics
Receiver

A short description of the continuous time high dynamics receiver model can be found on
page 244 of [1] (although full details are not given there). We need to use a discrete time
model; for this we will use the Wiener process acceleration model described in Section
6.2.3 of [2]; this model is also sometimes called the white noise jerk model. Note that this
is a discretized continuous time model, as opposed to the direct discrete time model of
Section 6.3.3 of [2]. Which of these two models to use is a matter of choice; both are an
approximation to the actual continuous time dynamics of the receiver.

The discrete-time state transition equation is

x (k + 1) = F (k) x (k) + v (k)

where

x (k)
∆
= [x, ẋ, ẍ, y, ẏ, ÿ, z, ż, z̈, rtr , ṙtr ]

T
k , rtr (k)

∆
= ctr (k) (21)

and

F (k) =



1 T 1
2T

2 0 0 0 0 0 0 0 0
0 1 T 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 T 1

2T
2 0 0 0 0 0

0 0 0 0 1 T 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 T 1

2T
2 0 0

0 0 0 0 0 0 0 1 T 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 T
0 0 0 0 0 0 0 0 0 0 1



(22)

With regard to the process noise model, let us first consider the x component for the
continuous time system. The changes in acceleration are modelled by a continuous time
zero-mean white noise as follows

...
x (t) = ṽx (t)

Note that the acceleration is a Wiener process, and its derivative, the jerk, is represented
by a white noise model. The changes in acceleration over a sampling period T are of
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the order of
√
q̃xT , where q̃x is the power spectral density of the continuous time process

noise ṽx (t). The same can be done for the y and z components. Considering all three
components as well as the receiver clock error noise model of Section 2.2, we have the

following discrete time process noise covariance matrix (i.e., Qv (k)
∆
= E

{
v (k) v (k)T

}
)

Qv (k) =



0 0 0 0 0 0 0 0
Qx 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 Qy 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 Qz 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 σ2

rφ
σrφσrf

0 0 0 0 0 0 0 0 0 σrfσrφ σ2
rf



(23)

where

Qx =

 1
20T

5 1
8T

4 1
6T

3

1
8T

4 1
3T

3 1
2T

2

1
6T

3 1
2T

2 T

 q̃x
Qy =

 1
20T

5 1
8T

4 1
6T

3

1
8T

4 1
3T

3 1
2T

2

1
6T

3 1
2T

2 T

 q̃y
Qz =

 1
20T

5 1
8T

4 1
6T

3

1
8T

4 1
3T

3 1
2T

2

1
6T

3 1
2T

2 T

 q̃z
and q̃x, q̃y and q̃z are the power spectral densities of the x, y and z components of the con-
tinuous time jerk noise, i.e., ṽx (t) , ṽy (t) and ṽt (t),respectively. Note that the components
of the jerk noise are assumed to be independent of each other and the clock bias noises.

The measurement equation is the same as in Section 2.3, but with the measurement matrix
now being

H (k + 1) =


∂ρ1
∂x 0 0 ∂ρ1

∂y 0 0 ∂ρ1
∂z 0 0 ∂ρ1

∂rtr
0

∂ρ2
∂x 0 0 ∂ρ2

∂y 0 0 ∂ρ2
∂z 0 0 ∂ρ2

∂rtr
0

. . . . . . . . . . .

. . . . . . . . . . .
∂ρNs
∂x 0 0

∂ρNs
∂y 0 0

∂ρNs
∂z 0 0

∂ρNs
∂rtr

0


k+1

(24)

and the corresponding measurement noise covariance matrix is as in Equation 14.

2.6 Extended Kalman Filter Equations - General Case

An extended Kalman filter [2, Section 10.3] is used as the estimation algorithm in this
work. The algorithm is summarized in the sequel; before summarizing the algorithm, some

10
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definitions will first be given, as follows. Let

x̂ (j|k)
∆
= E

[
x (j) |Zk

]
where

Zk
∆
= {z (j) , j ≤ k}

denotes the sequence of observations available at time k, and

E
[
x (j) |Zk

]
is the conditional expectation of x (j) at time j given Zk.

If j = k, then x̂ (j|k) is the estimate of the state (also called the filtered value); if j = k+1
then x̂ (j|k) is the predicted value (one-step) of the state. The state estimation error at
time k is defined as

x̃ (k|k)
∆
= x (k)− x̂ (k|k)

The state prediction error at time k is defined as

x̃ (k + 1|k)
∆
= x (k + 1)− x̂ (k + 1|k)

The state estimation covariance matrix (i.e., the covariance associated with the estimate
x̂ (k|k) ) at time k is

P (k|k)
∆
= E

[
x̃ (k|k) x̃ (k|k)T |Zk

]
The state prediction covariance matrix (i.e., the covariance associated with the prediction
x̂ (k + 1|k) ) at time k is

P (k + 1|k)
∆
= E

[
x̃ (k + 1|k) x̃ (k + 1|k)T |Zk

]
The predicted measurement (one-step) is

ẑ (k + 1|k)
∆
= E

[
z (k + 1) |Zk

]
The measurement prediction error (also called the innovation or residual) is defined as

ν (k + 1)
∆
= z̃ (k + 1|k)

∆
= z (k + 1)− ẑ (k + 1|k)

The measurement prediction covariance matrix or innovation covariance matrix is

S (k + 1)
∆
= E

[
z̃ (k + 1|k) z̃ (k + 1|k)T |Zk

]
The Kalman filter gain is

W (k + 1)
∆
= P (k + 1|k)H (k + 1)T S (k + 1)−1

Now consider the nonlinear system with dynamics

x (k + 1) = f [k,x (k) ,u (k)] + v (k)
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where x is the state vector, u is a known input, v is the process noise, which is assumed
to be additive, zero mean, and white, and f is a vector-valued and possibly time varying
non-linear function.

Let the measurement equation be

z (k) = h [k,x (k)] + w (k)

where w is the measurement noise, which is additive, zero mean, white, and uncorrelated
with the process noise, and the function h is also vector valued and can be time varying.

The Extended Kalman filter is a suboptimal recursive algorithm for the above system, as
follows. First, we start with the initial estimate x̂ (0|0) of x (0) and the associated initial
covariance P (0|0), both assumed to be available. Then, for estimation of the state of the
system, starting with the state estimate x̂ (k|k) at tk we have

State Prediction:

x̂ (k + 1|k) = f [k, x̂ (k|k) ,u (k)]

Measurement Prediction:

ẑ (k + 1|k) = h [k + 1, x̂ (k + 1|k)]

Measurement Residual:

ν (k + 1) = z (k + 1)− ẑ (k + 1|k)

Updated State Estimate:

x̂ (k + 1|k + 1) = x̂ (k + 1|k) +W (k + 1)ν (k + 1)

For state covariance computation, starting with the state covariance P (k|k)at tk we have

Evaluation of Jacobians:

F (k) =
∂f (k)

∂x

∣∣∣∣
x=x̂(k|k)

H (k + 1) =
∂h (k + 1)

∂x

∣∣∣∣
x=x̂(k+1|k)

State Prediction Covariance:

P (k + 1|k) = F (k)P (k|k)F T (k) +Q (k)

Residual Covariance:

S (k + 1) = H (k + 1)P (k + 1|k)H (k + 1)T +R (k + 1)

Filter Gain:

W (k + 1) = P (k + 1|k)H (k + 1)T S (k + 1)−1

Updated State Covariance:

P (k + 1|k + 1) = P (k + 1|k)−W (k + 1)S (k + 1)W (k + 1)T

12
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2.7 Extended Kalman Filter Equations for a Stationary Re-
ceiver

The extended Kalman filter for the stationary receiver case described in Section 2.3 will
now be described.

We start with the initial estimate x̂ (0|0) of x (0) which is determined using the equations
presented in Section 2.1. Note that the initial estimate doesn’t give any information about
the rate of change of receiver clock bias - this needs to be guessed. Our initial guess is
that it’s zero. We also need to calculate the covariance, P (0|0) , of the initial estimate
x̂ (0|0), which can be determined as follows. Let PA be the covariance associated with the
estimate of (x, y, z, ctr) obtained using Equation 7. Referring to Equation 4.11 in section
4.1.1 of [1] we have

PA =
(
J (0)T R (0)−1 J (0)

)−1
(25)

where

J (0) =


∂ρ1
∂x

∂ρ1
∂y

∂ρ1
∂z

∂ρ1
∂rtr

∂ρ2
∂x

∂ρ2
∂y

∂ρ2
∂z

∂ρ2
∂rtr

. . . .

. . . .
∂ρNs
∂x

∂ρNs
∂y

∂ρNs
∂z

∂ρNs
∂rtr



∣∣∣∣∣∣∣∣∣∣∣
x=x̂(0|0)

(26)

R (0) =


σ2
r1 0 . . 0
0 σ2

r2 . . 0
. . . . .
. . . . .
0 0 . . σ2

rNs


∣∣∣∣∣∣∣∣∣∣
x=x̂(0|0)

(27)

Then

P (0|0) =


PA11 PA12 PA13 PA14 0
PA21 PA22 PA23 PA24 0
PA31 PA32 PA33 PA34 0
PA41 PA42 PA43 PA44 0

0 0 0 0 2Qd22


Note that in the above matrix the covariances of the fifth column and fifth row can’t be
determined from the measurements made on the initial startup, hence, as a reasonable
guess, they are all set to zero, and the variance in the bottom right hand corner equal
to 2Qd22 , i.e., twice the variance of element 22 of the discrete time receiver clock process
noise covariance matrix, scaled to metres, in Equation 8.

Then, for estimation of the state of the system, starting with the state estimate x̂ (k|k) at
tk we have

State Prediction:

x̂ (k + 1|k) = F (k) x̂ (k|k) (28)
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Measurement Prediction:

ρ̂i (k + 1|k) =
[
(Xi (k + 1)− x̂ (k + 1|k))2 + (Yi (k + 1)− ŷ (k + 1|k))2 + (Zi (k + 1)− ẑ (k + 1|k))2

]1/2

(29)

+ r̂tr (k + 1|k)

for i = 1, .., Ns

Measurement Residual:

ν (k + 1) = ρ (k + 1)− ρ̂ (k + 1|k) (30)

Updated State Estimate:

x̂ (k + 1|k + 1) = x̂ (k + 1|k) +W (k + 1) ν (k + 1) (31)

For state covariance computation, starting with the state covariance P (k|k)at tk we have

Evaluation of Jacobians:

H (k + 1) =


∂ρ1
∂x

∂ρ1
∂y

∂ρ1
∂z

∂ρ1
∂rtr

0
∂ρ2
∂x

∂ρ2
∂y

∂ρ2
∂z

∂ρ2
∂rtr

0

. . . . .

. . . . .
∂ρNs
∂x

∂ρNs
∂y

∂ρNs
∂z

∂ρNs
∂rtr

0



∣∣∣∣∣∣∣∣∣∣∣
x=x̂(k+1|k)

(32)

State Prediction Covariance:

P (k + 1|k) = F (k)P (k|k)F T (k) +QΓv (k) (33)

Residual Covariance:

S (k + 1) = H (k + 1)P (k + 1|k)H (k + 1)T +R (k + 1) (34)

Filter Gain:

W (k + 1) = P (k + 1|k)H (k + 1)T S (k + 1)−1 (35)

Updated State Covariance:

P (k + 1|k + 1) = P (k + 1|k)−W (k + 1)S (k + 1)W (k + 1)T (36)

where x (k), F (k), QΓv (k), ρ (k) and R (k) are defined in Equations 9, 10, 11, 12 and 14,
respectively.

14
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2.8 Extended Kalman Filter Equations for a Low Dynamics
Receiver

The extended Kalman filter for the low dynamics receiver case will now be described.

Again, we start with the initial estimate x̂ (0|0) of x (0) which is determined using the
equations presented in Section 2.1. Since the the initial estimate doesn’t give any infor-
mation about the rate of change of receiver clock bias, this needs to be guessed. Our initial
guess is that it’s zero. We also need to calculate the covariance, P (0|0) , of the initial es-
timate x̂ (0|0), which can be determined as follows. As in Section 2.7, Equation 25 is used
to determine PA, with J (0) and R (0) defined as in Equations 26 and 27, respectively.
Note that PA is the covariance associated with the estimate of (x, y, z, ctr) obtained using
Equation 7.

Then

P (0|0) =



PA11 0 PA12 0 PA13 0 PA14 0
0 σ2

ẋ (0) 0 0 0 0 0 0
PA21 0 PA22 0 PA23 0 PA24 0

0 0 0 σ2
ẏ (0) 0 0 0 0

PA31 0 PA32 0 PA33 0 PA34 0
0 0 0 0 0 σ2

ż (0) 0 0
PA41 0 PA42 0 PA43 0 PA44 0

0 0 0 0 0 0 0 2Qd22


Note that in the above matrix the covariances (i.e., the off-diagonal terms) of the second,
fourth, sixth and eight row as well as the second, fourth, sixth and eighth column can’t
be determined from the measurements made on the initial startup, hence, as a reasonable
assumption, they are all set to zero. The variances of the x, y and z components of the
initial velocity estimate are assumed to be σ2

ẋ (0) , σ2
ẏ (0) and σ2

ż (0) respectively, and the
bottom right hand element of P (0|0) is set to 2Qd22 , i.e., twice the variance of element
22 of the discrete time receiver clock process noise covariance matrix, scaled to metres, in
Equation 8.

Then for estimation of the state of the system, starting with the state estimate x̂ (k|k) at
tk and for state covariance computation, starting with the state covariance P (k|k) at tk
we use Equations 28 to 31 and 33 to 36, where x (k), F (k), Γ (k), QΓv (k), ρ (k) and R (k)
are defined in Equations 2.4, 15, 16, 19, 12 and 14, respectively and H (k + 1) is given by

H (k + 1) =


∂ρ1
∂x 0 ∂ρ1

∂y 0 ∂ρ1
∂z 0 ∂ρ1

∂rtr
0

∂ρ2
∂x 0 ∂ρ2

∂y 0 ∂ρ2
∂z 0 ∂ρ2

∂rtr
0

. . . . . . . .

. . . . . . . .
∂ρNs
∂x 0

∂ρNs
∂y 0

∂ρNs
∂z 0

∂ρNs
∂rtr

0



∣∣∣∣∣∣∣∣∣∣∣
x=x̂(k+1|k)

(37)
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2.9 Extended Kalman Filter Equations for a High Dynamics
Receiver

The extended Kalman filter for the high dynamics receiver case will now be described.
Again, we start with the initial estimate x̂ (0|0) of x (0) which is determined using the
equations presented in Section 2.1. Since the the initial estimate doesn’t give any infor-
mation about the rate of change of receiver clock bias, this needs to be guessed. Our initial
guess is that it’s zero. We also need to calculate the covariance, P (0|0) , of the initial es-
timate x̂ (0|0), which can be determined as follows. As in Section 2.7, Equation 25 is used
to determine PA, with J (0) and R (0) defined as in Equations 26 and 27, respectively.
Note that PA is the covariance associated with the estimate of (x, y, z, ctr) obtained using
Equation 7. Then

P (0|0) =



PA11 0 0 PA12 0 0 PA13 0 0 PA14 0
0 σ2

ẋ (0) 0 0 0 0 0 0 0 0 0
0 0 σ2

ẍ (0) 0 0 0 0 0 0 0 0
PA21 0 0 PA22 0 0 PA23 0 0 PA24 0

0 0 0 0 σ2
ẏ (0) 0 0 0 0 0 0

0 0 0 0 0 σ2
ÿ (0) 0 0 0 0 0

PA31 0 0 PA32 0 0 PA33 0 0 PA34 0
0 0 0 0 0 0 0 σ2

ż (0) 0 0 0
0 0 0 0 0 0 0 0 σ2

z̈ (0) 0 0
PA41 0 0 PA42 0 0 PA43 0 0 PA44 0

0 0 0 0 0 0 0 0 0 0 2Qd22


In the above matrix, the covariances (i.e., the off-diagonal terms) of the second, third,
fifth, sixth, eight, ninth and eleventh row as well as the second, third, fifth, sixth, eight,
ninth and eleventh column can’t be determined from the measurements made on the initial
startup, hence, as a reasonable assumption, they are all set to zero. The variances of the
x, y and z components of the initial velocity estimate are assumed to be σ2

ẋ (0) , σ2
ẏ (0) and

σ2
ż (0) respectively, the variances of the x, y and z components of the initial acceleration

estimate are assumed to be σ2
ẍ (0) , σ2

ÿ (0) and σ2
z̈ (0) respectively, and the bottom right

hand element of P (0|0) is set to 2Qd22 , i.e., twice the variance of element 22 of the discrete
time receiver clock process noise covariance matrix, scaled to metres, in Equation 8.

Then for estimation of the state of the system, starting with the state estimate x̂ (k|k) at
tk and for state covariance computation, starting with the state covariance P (k|k) at tk
we use Equations 28 to 31 and 33 to 36, where x (k), F (k), Qv (k), ρ (k) and R (k) are
defined in Equations 21, 22, 23, 12 and 14, respectively and H (k + 1) is given by

H (k + 1) =


∂ρ1
∂x 0 0 ∂ρ1

∂y 0 0 ∂ρ1
∂z 0 0 ∂ρ1

∂rtr
0

∂ρ2
∂x 0 0 ∂ρ2

∂y 0 0 ∂ρ2
∂z 0 0 ∂ρ2

∂rtr
0

. . . . . . . . . . .

. . . . . . . . . . .
∂ρNs
∂x 0 0

∂ρNs
∂y 0 0

∂ρNs
∂z 0 0

∂ρNs
∂rtr

0



∣∣∣∣∣∣∣∣∣∣∣
x=x̂(k+1|k)

(38)
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3 Testing of Kalman Filter Algorithms

In order to test the algorithms developed in the previous sections, simulations were written
using the Matlab programming language. The aim of the simulations was to test the
instantaneous and Kalman filter estimators for stability and in general determine if they
are performing as expected. Simpifications were made in the scenarios considered, to the
extent that was possible, while still achieving the aims of the testing. Modelling of the
rotation of the earth, and movement of the satellites was not required for this stage of the
testing and hence was not implemented in the simulations, i.e., it was assumed that the
receiver was in an arbitrary inertial reference frame and the satellites were stationary in
this frame, with a predefined geometric configuration relative to initial receiver position.
The receiver-satellite geometry was made consistent with what could be expected for an
actual situation. In the testing of the Kalman filter using a stationary receiver model,
the receiver was kept stationary, whereas, for the other Kalman filters, the receiver was
in motion. Note that further testing with more sophisticated scenarios, utilizing actual
satellite trajectories would be desirable to fully test the filters which were developed.

3.1 Kalman Filter with Stationary Receiver Model

The Kalman filter using the stationary receiver model, which was described in Section
2.7, was coded in Matlab and tested by simulation. The details of the simulations are as
follows.

The Kalman filter update rate was set to T = 1 sec. The number of updates that the
Kalman filter was run for was 300 to determine short term performance, and then 3600
to determine performance over a longer period of time (1 hour). The latter served as a
more extended test to determine if there are any issues associated with filter divergence
due to numerical round-off errors, which is a common problem in Kalman filter imple-
mentations. The “actual” receiver range measurement error standard deviation was set to
σra = 5m. The receiver range measurement error standard deviation as modelled by the
Kalman filter was set to σrm = 5m. Six satellites were modelled in the simulations; their
positions were xs1 = (0.9390,−1.6265, 1.8781) × 107m, xs2 = (1.7648,−0.6423, 1.8781) ×
107m, xs3 = (1.7648, 0.6423, 1.8781)× 107m, xs4 = (0.9390, 1.6265, 1.8781)× 107m, xs5 =
(0.9390,−1.6265,−1.8781) × 107m, xs6 = (0.9390, 1.6265,−1.8781) × 107m. The receiver
position was xr =

(
6.371× 106, 100, 150

)
m.

Figures 1 and 2 show the results for the case of 300 updates. Figure 1 shows the errors
in the instantaneous position estimates; the instantaneous estimates were calculated using
the Gauss-Newton method as described in Section 2.1. Figure 2 shows the errors in
the Kalman filter estimates. Note that the error is defined to be the distance between
the estimated position and the actual position. Looking at Figure 2, we see that the
Kalman filter is very quickly reducing the position estimate errors to well below that of
the instantaneous estimates.

Figures 3 and 4 show the results for the case of 3600 updates; The primary reason for
doing the simulation that resulted in these figures was to test for divergence that may
result from numerical round-off errors. As can be seen from the two figures, convergence
continued for the duration of the simulation.
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Figure 1: Position estimation error of instantaneous estimates (stationary receiver model,
300 updates).
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Figure 2: Kalman filter position estimation error (300 updates), using stationary receiver
model.
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Figure 3: Position estimation error of instantaneous estimates (stationary receiver model,
3600 updates).
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Figure 4: Kalman filter position estimation error (3600 updates), using stationary receiver
model.
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3.2 Kalman Filter with Low Dynamics Receiver Model

The Kalman filter using the low dynamics receiver model, which was described in Section
2.8, was coded in Matlab and tested by simulation. The details of the simulations are as
follows.

The Kalman filter update rate was set to T = 1 sec. The number of updates that the
Kalman filter was run for was 300 to determine short term performance, and then 3600
to determine performance over a longer period of time (1 hour). The ”actual” receiver
range measurement error standard deviation was set to σra = 5m. The receiver range
measurement error standard deviation as modelled by the Kalman filter was set to σrm =
5m. The (acceleration) process noise standard deviation in the Kalman filter was set
to σẍ = σÿ = σz̈ = 0.2 m/s2. Six satellites were modelled in the simulation; their
positions were xs1 = (0.9390,−1.6265, 1.8781) × 107m, xs2 = (1.7648,−0.6423, 1.8781) ×
107m, xs3 = (1.7648, 0.6423, 1.8781)× 107m, xs4 = (0.9390, 1.6265, 1.8781)× 107m, xs5 =
(0.9390,−1.6265,−1.8781) × 107m, xs6 = (0.9390, 1.6265,−1.8781) × 107m. The initial
receiver position was xr =

(
6.371× 106, 100, 150

)
m; however, in these simulations the

receiver was not stationary, but instead had a velocity of vr = (0, 30, 40) m/s for the
duration of the simulations.

Figures 5 and 6 show the results for the case of 300 updates. Figure 5 shows the errors
in the instantaneous position estimates. Figure 6 shows the errors in the Kalman filter
estimates. Looking at Figure 6, we see that the Kalman filter is quickly reducing the
position estimate errors to below that of the instantaneous estimates. Note, however, that
the errors in the position estimates are higher than was the case for the filter using the
stationary receiver model. This is to be expected as this filter allows for receiver motion,
and hence does not filter the position estimates as heavily. Of course, this filter has the
advantage that it can track the position and velocity of a moving receiver, whereas the
filter with the stationary receiver model is not designed for a moving receiver, and hence
would not be expected to function well for that case.

Figures 7 and 8 show the results for the case of 3600 updates. As can be seen from the
two figures, convergence continued for the duration of the simulation.

3.3 Kalman Filter with High Dynamics Receiver Model

The Kalman filter using the high dynamics receiver model, which was described in Section
2.9, was coded in Matlab and tested by simulation. The details of the simulations are as
follows.

The Kalman filter update rate was set to T = 1 sec. The number of updates that
the Kalman filter was run for was 300 to determine short term performance, and then
3600 to determine performance over a longer period of time (1 hour). The ”actual” re-
ceiver range measurement error standard deviation was set to σra = 5m. The receiver
range measurement error standard deviation as modelled by the Kalman filter was set
to σrm = 5m. The power spectral densities, q̃x, q̃y and q̃z, of the x, y and z compo-
nents of the continuous time jerk noise were set to q̃x = q̃y = q̃z = 0.2. Six satellites
were modelled in the simulation; their positions were xs1 = (0.9390,−1.6265, 1.8781) ×
107m, xs2 = (1.7648,−0.6423, 1.8781) × 107m, xs3 = (1.7648, 0.6423, 1.8781) × 107m,
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Figure 5: Position estimation error of instantaneous estimates (low dynamics receiver
model, 300 updates).
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Figure 6: Kalman filter position estimation error (300 updates), using low dynamics re-
ceiver model.
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Figure 7: Position estimation error of instantaneous estimates (low dynamics receiver
model, 3600 updates).
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Figure 8: Kalman filter position estimation error (3600 updates), using low dynamics
receiver model.
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Figure 9: Position estimation error of instantaneous estimates (high dynamics Kalman
filter, 300 updates).

xs4 = (0.9390, 1.6265, 1.8781) × 107m, xs5 = (0.9390,−1.6265,−1.8781) × 107m, xs6 =
(0.9390, 1.6265,−1.8781)×107m. The initial receiver position was xr =

(
6.371× 106, 100, 150

)
m.

The receiver was initially stationary, then, from t = 101 s to t = 200 s, it experienced an
acceleration of ar = (0, 3, 4) m/s2.

Figures 9 and 10 show the results for the case of 300 updates. Figure 9 shows the errors
in the instantaneous position estimates. Figure 10 shows the errors in the Kalman filter
estimates. Looking at Figure 10, we see that the Kalman filter is quickly reducing the
position estimate errors to below that of the instantaneous estimates; however, the errors
in the position estimates are higher than was the case for the filters using the stationary
receiver and low dynamics models. Also, note that this filter has the advantage that it
can track the position, velocity and acceleration of the receiver. Figures 11 and 12 show
the velocity and acceleration estimates, respectively, for the case of 300 updates (same
simulation as that which produced Figures 9 and 10).

Figures 13 and 14 show the results for the case of 3600 updates. Figure 13 shows the
errors in the instantaneous position estimates, and Figure 14 shows the errors in the
Kalman filter estimates. Figures 15 and 16 show the velocity and acceleration estimates,
respectively, for the case of 3600 updates (same simulation as that which produced Figures
13 and 14). As can be seen from the two figures, convergence continued for the duration
of the simulation. While, superficially, the performance of the high dynamics Kalman
filter appears correct, a closer look indicates an anomoly. Looking at Figures 12 and 16,
we note that the acceleration estimates are very heavily filtered subsequent to about 150
updates. Noting the power spectral densities used in the Kalman filter model for the
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Figure 10: Kalman filter position estimation error (300 updates), using high dynamics
receiver model.
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Figure 11: Velocity estimates of high dynamics Kalman filter (300 updates). The red,
green and blue plots are the x, y and z components of the velocity, respectively.
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Figure 12: Acceleration estimates of high dynamics Kalman filter (300 updates). The
red, green and blue plots are the x, y and z components of the acceleration,
respectively.

continuous-time jerk noise, i.e., q̃x = q̃y = q̃z = 0.2, and referring to Equation 6.2.3-6 in
[2], we would expect changes of acceleration during a sampling period T to be of the order
of
√
q̃xT ,

√
q̃yT and

√
q̃zT for the x, y and z components respectively, i.e.,

√
0.2 ≈ 0.45

m/s2. Hence, given noisy measurements, we would intuitively expect that, after a period
of convergence, the acceleration estimates of the filter would exhibit acceleration noise of
this order. Looking at Figures 12 and 16, we see that the acceleration noise is well below
this, indicating that the filter is filtering more heavily than it is designed to do. A possible
cause of this is numerical roundoff error. This will be investigated in the following section.

4 Minimizing Round-off Errors

The Kalman filter implementations described up to this point will, from a theoretical
standpoint, give correct results based on the models used; however, in practice they can
be somewhat sensitive to computer round-off errors. Round-off errors are a side effect of
computer arithmetic using a fixed number of bits for representing numbers. In this chapter
we will consider an alternative implementation technique that significantly reduces the
effects of these errors.
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Figure 13: Position estimation error of instantaneous estimates (high dynamics Kalman
filter, 3600 updates).

Update number
0 500 1000 1500 2000 2500 3000 3500 4000

E
rr

or
 (

m
et

re
s)

0

5

10

15

20

25

30

35

Figure 14: Kalman filter position estimation error (3600 updates), using high dynamics
receiver model.
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Figure 15: Velocity estimates of high dynamics Kalman filter (3600 updates). The red,
green and blue plots are the x, y and z components of the velocity, respectively.
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Figure 16: Acceleration estimates of high dynamics Kalman filter (3600 updates). The
red, green and blue plots are the x, y and z components of the acceleration,
respectively.
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4.1 Some Preliminaries

There have been various techniques developed as alternatives to the standard Kalman
filter, with the aim of reducing the effects of round-off errors. A description of some of
the most important techniques can be found in Chapter 6 of [3]. Amongst these, the
most reliable and numerically stable implementations of the Kalman filter are collectively
referred to as square-root filters [3, Section 6.4]. Square-root filters use a reformulation
of the state prediction and state estimate equations such that the dependent variable is
a Cholesky factor, or modified Cholesky factor of the covariance matrices P (k + 1|k) and
P (k + 1|k + 1). Two of the more favoured implementations of square-root filter are the
Carlson-Schmidt square-root filter and the Bierman-Thornton UD filter. We will concen-
trate on the Bierman-Thornton UD filter, as it, in particular, has been used successfully
on problems with thousands of state variables [3, p. 262].

First, let us summarize what Cholesky and modified Cholesky factors are [3, Section 6.4.3].
The product of a matrix C with its own transpose in the form CCT = M is called the
symmetric product of C, and C is called a Cholesky factor of M . Note that, strictly
speaking, a Cholesky factor is not a matrix square root, although the terms are often
used interchangeably. All symmetric nonnegative definite matrices (of which covariance
matrices are an example) have Cholesky factors. An upper triangular matrix U is called
unit upper triangular if its diagonal elements are all 1. Similarly, a lower triangular
matrix L is called unit lower triangular if all of its diagonal elements are 1. The modified
Cholesky decomposition of a symmetric positive definite matrix M is a decomposition into
products M = UDUT such that U is unit upper triangular and D is a diagonal matrix.
This is also often called UD decomposition. The Bierman-Thornton UD filter relies on
UD decomposition of the covariance matrices P (k + 1|k) and P (k + 1|k + 1) to achieve
superior numerical stability and robustness. The following section describes this filter.

4.2 Bierman-Thornton UD Filtering

For the sake of compactness, we now introduce the following subscript notation. Let Pk|k
∆
=

P (k|k), Pk+1|k
∆
= P (k + 1|k), and so on. Now, let Pk|k = Uk|kDk|kU

T
k|k, and Pk+1|k =

Uk+1|kDk+1|kU
T
k+1|k. Consider one cycle of the Kalman-filter covariance update now. The

state estimate error covariance matrix at time tk is Pk|k = Uk|kDk|kU
T
k|k. Consider first

the temporal update of the Kalman filter. The state prediction covariance for cycle k + 1
is

Pk+1|k = FkPk|kF
T
k +Qk

Now, (from [3, Section 6.5.2.2]), let

A =

[
UTk|kF

T
k

GTk

]

Dw =

[
Dk|k 0

0 DQk

]
and

Qk = GkDQkG
T
k

28
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where GkDQkG
T
k is the modified Cholesky decomposition of Qk. Then

ATDwA = FkUk|kDk|kU
T
k|kF

T
k +GkDQkG

T
k

= FkPk|kF
T
k +Qk

= Pk+1|k

= Uk+1|kDk+1|kU
T
k+1|k

Now, using the modified weighted Gram-Schmidt orthogonalization procedure ([3, p. 272])
with respect to the diagonal weighting matrix Dw, we produce a unit lower triangular n×n
matrix L−1, a matrix B, and a diagonal matrix Dβ such that

A = BL

and

BTDwB = diag1≤i≤n {βi} = Dβ

hence

ATDwA = (BL)T DwBL

= LTBTDwBL

= LTDβL

Consequently, the factors

Uk+1|k = LT

Dk+1|k = Dβ

are the solutions of the (Thornton) temporal update problem for update k of the UD
filter. Note that the code that we used for implementing this was thornton.m as supplied
in soft-copy form with [3]. It was found in the directory Chapter 8.

Now, let us consider the measurement update. The updated state estimate covariance for
cycle k is

Pk+1|k+1 = Pk+1|k − Pk+1|kH
T
k+1S

−1
k+1Hk+1Pk+1|k

where

Sk+1 = Hk+1Pk+1|kH
T
k+1 +Rk+1

(Equations 2-229 and 2-224 of [4], respectively). Let us now consider the case where the
measurement update is a scalar. Then we have

Pk+1|k+1 = Pk+1|k − Pk+1|khk+1α
−1
k+1h

T
k+1Pk+1|k

where hk+1 is the vector corresponding to the row of Hk+1 that applies to the scalar
measurement being considered,

αk+1 = hTk+1Pk+1|khk+1 + rk+1
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and rk+1 is the variance of the measurement. Let Pk+1|k+1 = Uk+1|k+1Dk+1|k+1U
T
k+1|k+1

and Pk+1|k = Uk+1|kDk+1|kU
T
k+1|k, then we have

Uk+1|k+1Dk+1|k+1U
T
k+1|k+1 = Uk+1|kDk+1|kU

T
k+1|k

− Uk+1|kDk+1|kU
T
k+1|khk+1α

−1
k+1h

T
k+1Uk+1|kDk+1|kU

T
k+1|k

= Uk+1|k

[
Dk+1|k −Dk+1|kU

T
k+1|khk+1α

−1
k+1h

T
k+1Uk+1|kDk+1|k

]
UTk+1|k

Let v = Dk+1|kU
T
k+1|khk+1 then

Uk+1|k+1Dk+1|k+1U
T
k+1|k+1 = Uk+1|k

[
Dk+1|k − vα−1

k+1v
T
]
UTk+1|k

(note that Dk+1|k+1 = DT
k+1|k+1 because Dk+1|k+1 is a diagonal matrix).

Now perform UD decomposition on (Dk+1|k − vα−1
k+1v

T ) to get

Uk+1|k+1Dk+1|k+1U
T
k+1|k+1 = Uk+1|k

[
ŪD̄ŪT

]
UTk+1|k

=
(
Uk+1|kŪ

)
D̄
(
Uk+1|kŪ

)T
hence

Uk+1|k+1 = Uk+1|kŪ

Dk+1|k+1 = D̄

The algorithim for the UD decomposition of
(
Dk+1|k − vα−1

k+1v
T
)

to produce ŪD̄ŪT can
be found on page 78 of [5], and the corresponding Matlab code that was written to imple-
ment the algorithm is listed in Appendix A.

Now, if the measurement is a vector, and the measurement covariance matrix is diagonal,
then the scalar components of the measurement can simply be processed serially as scalar
observations with statistically independent measurement errors. This, in fact, is the case
for the measurements that we have. If the measurement covariance matrix is not diagonal,
then the components cannot be processed serially; however, the measurement vector can be
redefined, via a linear transformation, so that the measurement errors of its components are
uncorrelated, i.e., the covariance matrix of the redefined measurement vector is diagonal.
A procedure for doing this is described in Section 6.4.3.3 of [3].

Now, to start the Kalman filter, we need U0|0 and D0|0. To obtain these, we simply perform
UD decomposition on P0|0 as per Section 6.4.3.2 (Table 6.4) of [3]. UD decomposition is
also used in one other place in our simulation code, i.e., for computing PA as per Equation
25. This is done as follows; we have

PA =
(
J (0)T R (0)−1 J (0)

)−1
(39)

But R (0) = diag {ri (0)} is a diagonal matrix, so R (0)−1 = diag {1/ri (0)} and hence

computing
(
J (0)T R (0)−1 J (0)

)
is computationally efficient and not very sensitive to

round-off errors. However, this is not the case when taking its inverse. Circumvention
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of this problem is done as follows. Let PI =
(
J (0)T R (0)−1 J (0)

)
and now perform UD

decomposition on PI , resulting in PI = UIDIU
T
I , hence

PA =
(
UIDIU

T
I

)−1

=
(
UTI
)−1

D−1
I U−1

I

=
(
U−1
I

)T
D−1
I U−1

I

Hence, to obtain PA, we now only have to invert D, which is a diagonal matrix and U
which is a unit upper triangular matrix. This turns out to be less sensitive to numerical
round-off errors than direct inversion of PI . The reader is referred to Section 6.4.3.5 and
Tables 6.4, 6.7 and 6.8 of [3] for a description of the MATLAB code for doing this. Note
that the functions that we used were SPDinv.m, UD decomp.m and UDinv.m, as supplied
in soft-copy form with [3]. They were found in the directory TABLE6pt8.

4.3 Testing of Bierman-Thornton UD Filter with High Dy-
namics Receiver Model

The Bierman-Thornton implementation of the Kalman filter with the high dynamics re-
ceiver model, as described in Section 4.2, was coded in Matlab and tested by simulation.
These simulations and tests were done with the purpose of comparing the performance
with that of the standard form Kalman Filter (also using the high dynamics receiver
model). With the exception of now using the Bierman-Thornton implementation, all
other parameters were kept identical to those used for the standard form Kalman Filter
simulations.

Figures 17, 18, 19 and 20 show the results for the case of 300 updates. Figure 17 shows
the errors in the instantaneous position estimates. Figure 18 shows the errors in the
Bierman-Thornton Kalman filter position estimates. Figures 19 and 20 show the velocity
and acceleration estimates, respectively, for the case of 300 updates (same simulation as
that which produced Figures 17 and 18).

Comparing Figure 18 with Figure 10, we see that the filtered position estimate errors of the
Bierman-Thornton Filter appear to be similar to that of the standard form high dynamics
Kalman filter. However, if we compare the velocity estimates in Figure 19 with that of
Figure 11, we note a considerable difference in performance. Comparing the acceleration
estimates of Figure 20 with that of 12, we see an even greater difference in performance.

Figures 21, 22, 23 and 24 show the results for the case of 3600 updates. Figure 21 shows
the errors in the instantaneous position estimates. Figure 22 shows the errors in the
Bierman-Thornton Kalman filter estimates. Figures 23 and 24 show the velocity and
acceleration estimates, respectively, for the case of 3600 updates (same simulation as that
which produced Figures 21 and 22). Comparing Figure 22 with Figure 14, we see that
the filtered position estimate errors of the Bierman-Thornton Filter appear to be slightly
smaller than that of the standard form high dynamics Kalman filter. As was the case
for the 300 update simulations, when we compare the velocity estimates in Figure 23
with that of Figure 15, we note a considerable difference in performance. Comparing the
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Figure 17: Position estimation error of instantaneous estimates (high dynamics Bierman-
Thornton Kalman filter, 300 updates).
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Figure 18: Bierman-Thornton Kalman filter position estimation error (300 updates), us-
ing high dynamics receiver model.
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Figure 19: Velocity estimates of high dynamics Bierman-Thornton Kalman filter (300
updates). The red, green and blue plots are the x, y and z components of the
velocity, respectively.
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Figure 20: Acceleration estimates of high dynamics Bierman-Thornton Kalman filter (300
updates). The red, green and blue plots are the x, y and z components of the
acceleration, respectively.
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Figure 21: Position estimation error of instantaneous estimates (high dynamics Bierman-
Thornton Kalman filter, 3600 updates).

acceleration estimates of Figure 24 with that of 16, we again see an even greater difference
in performance.

Now looking at Figures 20 and 24, we note that the variations in the acceleration estimates
appear to be consistent with the acceleration noise used in the Kalman filter model, as
calculated at the end of Section 3.3. As further confirmation of this consistency, another
run of the simulation was performed for the case of 3600 updates, and the standard
deviation of the last 3000 acceleration estimates, for the x-component of acceleration, was
computed, giving a result of approximately 0.41 m/s2, which is reasonably close to the
value of 0.45 m/s2 that was calculated at the end of Section 3.3. Based on these results,
indications are that the Bierman-Thornton filter is performing correctly, and the standard
form Kalman filter, which was tested in Section 3.3, is not. To confirm this, a third form
of the Kalman filter (i.e., the Josephson form), was implemented and simulations were run
for comparison with the standard form and Bierman-Thornton filters. This is described
in the following section.

4.4 Josephson Form Covariance Update

To confirm which of the two high dynamics filters is giving the correct estimates of the
receiver’s acceleration, the covariance update equation (Equation 36), as used in the stan-
dard filter, was replaced with the Josephson form, which is considered to be less sensitive
to round-off errors. The Josephson form of the covariance update equation is as follows
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Figure 22: Bierman-Thornton Kalman filter position estimation error (3600 updates),
using high dynamics receiver model.
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Figure 23: Velocity estimates of high dynamics Bierman-Thornton Kalman filter (3600
updates). The red, green and blue plots are the x, y and z components of the
velocity, respectively.
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Figure 24: Acceleration estimates of high dynamics Bierman-Thornton Kalman filter
(3600 updates). The red, green and blue plots are the x, y and z components
of the acceleration, respectively.

[2, p. 294]

P (k + 1|k + 1) = [I −W (k + 1)H (k + 1)]P (k + 1|k) [I −W (k + 1)H (k + 1)]T

+ W (k + 1)R (k + 1)W (k + 1)T

The Kalman filter with the high dynamics receiver model, with the Josephson form re-
placement, was coded in Matlab and tested by simulation. These simulations and tests
were done with the purpose of comparing the performance with that of the standard form
Kalman Filter (also using the high dynamics receiver model), and the Bierman-Thornton
version of the Kalman filter. All other parameters were kept identical to those used for
the standard form Kalman Filter and the Bierman-Thornton simulations.

Figures 25, 26, 27 and 28 show the results for the case of 300 updates. Figure 25 shows the
errors in the instantaneous position estimates. Figure 26 shows the errors in the Josephson
Kalman filter estimates. Figures 27 and 28 show the velocity and acceleration estimates,
respectively, for the case of 300 updates (same simulation as that which produced Figures
25 and 26).

Figures 29, 30, 31 and 32 show the results for the case of 3600 updates. Figure 29 shows the
errors in the instantaneous position estimates. Figure 30 shows the errors in the Josephson
Kalman filter estimates. Figures 31 and 32 show the velocity and acceleration estimates,
respectively, for the case of 3600 updates (same simulation as that which produced Figures
29 and 30).
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Figure 25: Position estimation error of instantaneous estimates (high dynamics Joseph-
son Kalman filter, 300 updates).
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Figure 26: Josephson Kalman filter position estimation error (300 updates), using high
dynamics receiver model.
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Figure 27: Velocity estimates of high dynamics Josephson Kalman filter (300 updates).
The red, green and blue plots are the x, y and z components of the velocity,
respectively.
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Figure 28: Acceleration estimates of high dynamics Josephson Kalman filter (300 up-
dates). The red, green and blue plots are the x, y and z components of the
acceleration, respectively.
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Figure 29: Position estimation error of instantaneous estimates (high dynamics Joseph-
son Kalman filter, 3600 updates).
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Figure 30: Josephson Kalman filter position estimation error (3600 updates), using high
dynamics receiver model.
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Figure 31: Velocity estimates of high dynamics Josephson Kalman filter (3600 updates).
The red, green and blue plots are the x, y and z components of the velocity,
respectively.
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Figure 32: Acceleration estimates of high dynamics Josephson Kalman filter (3600 up-
dates). The red, green and blue plots are the x, y and z components of the
acceleration, respectively.
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If we now compare the simulation results for Josephson form filter with the standard form
filter and the Bierman-Thornton UD filter we find the following.

Firstly, consider the simulations that were run for 300 updates. Comparing Figures 10,
18 and 26, we note that the position estimation error appears to be approximately the
same for all three filters. Comparing Figures 11, 19 and 27, we see that the velocity
estimates of Bierman-Thornton and Josephson filters are approximately the same. The
velocity estimates of standard form filter are different, i.e, they are filtered more heavily.
Comparing Figures 12, 20 and 28, we see that the acceleration estimates of Bierman-
Thornton and Josephson filters are approximately the same. The acceleration estimates
of standard form filter are considerably different, i.e, they are filtered more heavily.

Now let us consider the simulations that were run for 3600 updates. Comparing Figures
14, 22 and 30, we see that the position estimation error appears to be approximately
the same for the Bierman-Thornton and Josephson filters. The position estimation error
for the standard form filter appears to be slightly greater than for the other two filters.
Comparing 15, 23 and 31, we find that the velocity estimates of Bierman-Thornton and
Josephson filters are approximately the same. The velocity estimates of standard form
filter are different, i.e., they are filtered more heavily. Comparing Figures 16, 24 and
32, we see that the acceleration estimates of Bierman-Thornton and Josephson filters are
approximately the same. The acceleration estimates of standard form filter are different,
i.e., they are filtered more heavily.

In summary, the Bierman-Thornton and Josephson filters give approximately the same per-
formance, whereas the standard form filter gives substantially different results, confirming
that the standard form filter is performing incorrectly. Given that the only difference
between the standard form and the Josephson form filter algorithms is the equation for
the state estimate covariance update, the result indicates that, for the simulations consid-
ered, the primary cause of the incorrect behaviour of the standard form filter is the effects
of numerical error on the standard form state estimate covariance update equation i.e.,
Equation 36.

5 Concluding Remarks

In this report, the mathematics used to convert GPS satellite-to-receiver pseudo-ranges
to receiver position estimates is presented. First, the report discusses a method that is
used to determine instantaneous estimates of receiver position; it then goes on to develop
three Kalman filter based estimators. The three Kalman filter estimators use a stationary
receiver, low dynamics, and high dynamics model for the receiver kinematics, respectively.
The development of the three types of Kalman filter, as well as the instantaneous estimator
is presented in Section 2. Section 3 then presents the results of testing of the filters by
simulation. It is found that there are some indications of degraded performance due to
numerical round-off in the case of the high dynamics Kalman filter. To investigate this
issue further, an alternate form of the high dynamics filter, using modified Cholesky factors
of covariance matrices, is developed in Section 4. The filter was implemented in Matlab
and tested by simulation. It is found that, for the simulations considered, the alternate
form filter overcomes the problems associated with numerical errors. The results of the
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simulations are also in Section 4.
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Appendix A Matlab Code for Bierman

Measurement Update

The following code was used in the implementation of the Bierman UD measurement
update (cf., Section 4.2).

function [KalGain,U_post,D_post] = MyBierman(r,h,U_prior,D_prior)

%

% Matlab implementation of the Bierman "square root filtering without square roots",

% as interpreted from "Factorization Methods for Discrete Sequential Estimation",

% Gerard J. Bierman, 1977, Section V.3.

%

% P. W. Sarunic

%

% INPUTS:

% r variance of measurement error

% h measurement sensitivity (column) vector (note "h" is the same

% as the (column) vector "a" in Bierman’s book, Section V.3).

% U_prior unit upper triangular factor of covariance matrix of a priori state uncertainty

% D_prior diagonal factor of covariance matrix of a priori state uncertainty

%

% OUTPUTS:

% U_post upper triangular UD factor of a posteriori state uncertainty covariance

% D_post diagonal UD factor of a posteriori state uncertainty covariance

% KalGain Kalman filter gain

%

[VecLength, Unused] = size(U_prior);

f = U_prior’ * h;

v = D_prior * f;

alpha = zeros(VecLength,1);

alpha(1,1) = r + v(1,1)*f(1,1);

D_post = zeros(VecLength,VecLength);

D_post(1,1) = D_prior(1,1)*r/alpha(1,1);

K = zeros(VecLength,VecLength);

K(1,1) = v(1,1);

lambda = zeros(VecLength,1);

U_post = zeros(VecLength,VecLength);

U_post(:,1) = U_prior(:,1); % Note: I added this myself (it wasn’t expicitly

% mentioned in Bierman’s pseudo-code).

for j = 2:VecLength

alpha(j,1) = alpha(j-1,1) + v(j,1) * f(j,1);

D_post(j,j) = D_prior(j,j) * alpha(j-1,1)/alpha(j,1);

lambda(j,1) = -f(j,1)/alpha(j-1,1);

U_post(:,j) = U_prior(:,j) + lambda(j,1)*K(:,j-1);

K(:,j) = K(:,j-1) + v(j,1) * U_prior(:,j);
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end;

KalGain = K(:,VecLength)/alpha(VecLength,1);
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